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Abstract. From the analytic properties of mnsmission as a function of the complex 
wavevector we derive the dispersion relations connecting the mnsmission amplitude 
IT(k)l and the change A p ( k )  in the density of states intmduced by the scattering 
potential. We obtain several sum rules for both these quantities and we show that 
narrow resonances in A p ( k )  and in IT(k)l* have the Same position and width. 

The onedimensional scattering problem has been studied mainly in relation to 
scattering by spherically symmetric potentials [l]. The inverse scattering problem i.e. 
how to tind the potential from the scattering data, has also been considered for the 
purely one-dimensional case [2,3]. This latter case differs from the radial Schr6dinger 
equation not only in the absence of centrifugal potential l(Z+ I)/.* but also in the 
fact that the radial solutions exist only for r > 0 and are non-degenerate while the 
purely one-dimensional scattering involves twofolddegenelate functions defined for 
I < 0 and for z > 0. Reoently, interest in this problem has revived owing to the 
studies of semiconductor heterostructures, e.g. resonant tunnelling diodes. 

'ho quantities have been frequently used to characterize the continuous spectra 
of onedimensional structures: the transmission amplitude IT(E)I and the density 
of states (DOS) p( E). In fact, for an infinite system, p( E) becomes infinite but 
its change A p (  E) = p( E )  - pu( E) due to the scattering potential is finite for 
sufficiently localized potentials. In principle, A p ( E )  is a more universal quantity 
because it is well defined in cases when there is no transmission [4]. However, for the 
scattering on a bounded and localized potential the two quantities exist and have some 
similarities; in particular, for the double-barrier structure [4] the narrow resonances 
in IT(E)I* and in A p (  E) have the same position and width. In the present paper we 
demonstrate the general relationships between A p (  E) and IT(E)I using the analytic 
properties of T studied as a function of the complex wavevector. 
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We start from the relationship (obtained in [SI and rederived recently by ourselves 
I6l): 

W k )  = (l/*)(d+(k)/dk) (1) 

where IC is the wavevector (E = h2k2/2m) and $(k) is the phase of the transmission 
coefficient T(k) = IT(k)l exp[i$(k)]. As was shown in [2], for the scattering 
potential V ( x )  satisfying the condition 

f m  J _ ,  (1 + I.l)lV(X)l d+ < (2) 

the transmission coefficient T( z )  can be defined for the complex argument z and is 
a meromorphic function in the upper half-plane (Im z > 0). The only singularities in 
T(z) in that region are simple poles on the imaginaly axis (z = i K n )  corresponding 
to bound states in the potential V(x)(IE,I = ( h ~ , ) ~ / 2 m ) .  On the real axis, 

T ( - k )  = T’(h). (3) 

Moreover, for lzl- 03, we have the asymptotic behaviour 

ia T ( z ) = l - -  z 

where 

a=-/ m fm V ( x ) d x .  
ha m m  

(4) 

It can also be shown that the only zero of T( z )  for Im z 2 0 can occur at z = 
0 and it is then of first order. For the potential satisfying also the condition 

it can be shown that, for llcl -t 0, 

where Nb is the number of bound states of the potential. Applying to T(z) the 
theorem giving the number N of zeros and number P of poles of a meromorphic 
function f ( z ) ,  i.e. 
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and choosing the contour consisting of [-R,-E] and [€,RI on the real axis, the 
semicircle around zero of radius E and the large semicircle of radius R( R -+ CO, c + 
0), we obtain, for the transmission phase +, 

+(RI - +(e)=  d; - Nb). (9) 

Therefore, if we choose, according to equation (7), 

(10) 1 = r ( N b  - 5) 

we obtain +(CO) = 0, consistent with equation (4). Because of equation (3) we then 
have 

+(-k) = -+(k) (11) 

so that +(IC) is continuous except at IC = 0 where it jumps by r ( 2 N b  - 1). From 
equation (9) we obtain the sum rule for A p ( k ) ,  namely 

1; A p ( k )  dk = 4 - Nb (12) 

so that the bound states reduce the continuum DOS. It is interesting that for Nb = 
0 (as for the double-barrier tunnelling structure) the total change in the continuum 
DOS is always :, even for the vanishingly small scattering potential. In this limit, 
A p ( k )  -+ S(k) .  For the vanishingly small quantum well we always have a bound 
state ( N b  = 1) and A p ( k )  -+ -S(k) .  

In the lower half-plane we can also have simple poles of T(  2). If one such pole 
occurs near the real axis at k, - i r ,  we have 

'U 
( ~ - k , + i r )  T(z) 2 

which gives, for real z = k, 

Thus we obtain a Lorentzian resonance of IT(k)12 centred at k,, of width r. Knowing 
that IT(k)l < 1, we obtain lTul < r. The phase of T(k) will be (+" is the phase of 
TU) 

+(k) ~ + ~ - t a n - ' [ r / ( k -  k,)] (15) 

which gives, by virtue of equation (I), 

1 r 
P (k - kU)z + rz' A p (  k) N - 
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Thus the simple poles of T(z) below the real axis give rise to Lorentzian resonances 
in IT(k)12 and in A p ( k )  with exactly the same position and width. 

The general relationships between A p ( k )  and the transmission amplitude IT(k)l 
can be obtained by considering the function f (2) 
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analytic for Im z > 0. The factor ( z  + ip) /z  takes care of the zero of T(z) when 
Iz( + 0. In the final results we take 0 -, 0. The remaining factors eliminate the 
poles for z = iKn. For IzI --t m the function f(z) vanishes. Therefore we can obtain 
the standard dispersion relations [I] between the real and imaginary parts of f( z). 
The first dispersion relation is 

where P stands for the principal value of the integral. Using 

integrating by parts and setting p + 0, we obtain 

Here we omit the principal value symbol because log Ik' - kl is integrable around k. 
The integral of the second term in large parenthaes can be performed analytically. 
After some simple transformations we obtain 

l o g [ l T ( k ) l n t ( l + s ) ]  = - i r d k ' A p ( k ' )  l o g l - - .  I :I (21) 

The lower integration limit is 0, which means that we avoid any b(k')  contributions 
to d+(k')/dP arising because of the discnntinuity of +(k') at zero. From the above 
formula we can obtain another sum rule for A p ( k ) .  For Ikl -+ 00, according to 
equation (4), 

01 
A p ( k )  - 

T kz 
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while 

7 IT(k)[ z 1 - - k z .  

Expanding log( 1 + e) e in equation (21), we obtain the sum rule 
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Both terms in the large parentheses cannot be integrated separately but their 
difference is integrable. One could also differentiate both sides of equation (IS) with 
respect to k, arriving at the dispersion relation which is the derivative of equation (21) 
but with the principal value of the integral. 

Let us now turn to the second dispersion relation between the Re[f(z)] and 
Im[f(z)]. Differentiating both sides with respect to k, we obtain (after some 
manipulations) 

where the terms containing p cancelled. We can see from equation (U) that each 
bound state reduces the DOS in the continuum by some quantity A p , ( k )  with 
J:"Ap,(k) dk = 1. From the asymptotic behaviour of A p ( k )  (equation (22)) 
we can obtain from equation (25) the sum rule for the transmission amplitude: 

N b  

Cr+2GKc, =-- 1'- logIT(k')[Z dk' 
7r 

n=l 

Let us finally note that the coincidence of narrow Lorentzian resonances in Ap( k) 
and in IT(k)lz can be easily demonstrated using the dispersion relations (21) and (25). 

Concluding, we have found general relationships between the transmission 
amplitude and the change in the DOS (equations (21) and (25)). We obtained 
two sum rules for A p ( k )  (equations (12) and (24)) and one sum rule for lT(k)I2 
(equation (26)). Narrow resonances in Ap(k)  correspond to simple poles of T ( z )  
slightly below the real axis and have the same position and width for IT(k)lZ and 
A d k ) .  
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