IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Density of states and transmission in the one-dimensional scattering problem

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys.: Condens. Matter 5 1701
(http://iopscience.iop.org/0953-8984/5/11/010)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.159
The article was downloaded on 12/05/2010 at 13:03

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/5/11
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

I. Phys.: Condens. Matter § (1993) 1701-1706. Printed in the UK

Density of states and transmission in the one-dimensional
scattering problem

Witold Trzeciakowskit§ and Massimo Guriolit

t Institute of Condensed Matter Theory, Forum del Consorzio Inter-Universitario
Nazionale per la Fisicd della Materia, Department of Physics, University of Florence,
Largo Enrico Fermi 2, 50125 Florence, Italy

1 European Laboratory of Nonlinear Spectroscopy, Department of Physics, University of
Florence, Largo Enrico Fermi 2, 50125 Florence, Italy

Received 28 October 1992

Abstract. From the analytic properties of transmission as a function of the complex
wavevector we derive the dispersion relations connecting the tramsmission amplitude
|T(k)| and the change Ap(k) in the density of states introduced by the scattering
potential. We obtain several sum rules for both these quantities and we show that
narrow resonances in Ap(k) and in |7'(k)[® have the same position and width.

The one-dimensional scattering problem has been studied mainly in relation to
scattering by spherically symmetric potentials [1]. The inverse scattering problem i.e.
how to find the potential from the scattering data, has also been considered for the
purely one-dimensional case [2,3]. This latter case differs from the radial Schrodinger
equation not only in the absence of centrifugal potential {({ -+ 1)/+? but also in the
fact that the radial solutions exist only for r» > 0 and are non-degenerate while the
purely one-dimensional scattering involves twofold-degencrate functions defined for
x < 0 and for z > 0. Recently, interest in this problem has revived owing to the
studies of semiconductor heterostructures, e.g. resonant tunnelling diodes. _

Two quantities have been frequently used to characterize the continuous spectra
of one-dimensional structures: the transmission amplitude |T(E)| and the density
of states (DOS) po(E). In fact, for an infinite system, p( &) becomes infinite but
its change Ap(E) = p(E) — py( E) due to the scattering potential is finite for
sufficiently localized potentials. In principle, Ap(E) is a more universal quantity
because it is well defined in cases when there is no transmission [4]. However, for the
scattering on a bounded and localized potential the two quantities exist and have some
similarities; in particular, for the double-barrier structure [4] the narrow resonances
in JT(E)|? and in Ap( E) have the same position and width. In the present paper we
demonstrate the general relationships between Ap( E) and |T( E)} using the analytic
properties of T studjed as a function of the complex wavevector.
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We start from the relationship (obtained in {5] and rederived recently by ourselves

[6]):
Ap(k) = (1/m)(dp(k) /dk) )
where % is the wavevector (E = A2k? /2m) and (k) is the phase of the transmission

coefficient T(k) = |T(k)] expliry(k)]. As was shown in [2], for the scattering
potential V() satisfying the condition

[ (4 DIV dz < o0 @

o0
the transmission coefficient T(2) can be defined for the complex argument z and is
a meromorphic function in the upper half-plane (Im 2z > 0). The only singularities in

T(z) in that region are simple poles on the imaginary axis (z = ix, ) corresponding
to bound states in the potential V(z)(|E,| = (%k,)?*/2m). On the real axis,

T(—k) = T*(k). 3)

Moreover, for {z| — oo, we have the asymptotic behaviour

T(zy~1~ % “4)
where
+oc
o= % | V(@) da. ()

It can also be shown that the only zero of T'(2) for Im z > 0 can occur at z =
0 and it is then of first order. For the potential satisfying also the condition

/+°° 22| V(&)| dx < o0 (6)

oo

it can be shown that, for [k] — 0,
T(k) = —iLgk(—1)" Ly>0 (7

where NN, is the number of bound states of the potential. Applying to T'(z) the
theorem giving the number N of zeros and number P of poles of a meromorphic
function f(z), ie.

1 (), _
5 —}ﬂ(z—)dZ—N—P (8)



DOS and transmission in 1D scaltering 1703

and choosing the contour consisting of [~ R, —¢] and [¢, R] on the real axis, the
semicircle around zero of radius € and the large semicircle of radius R(R — co,€ —
0), we obtain, for the transmission phase 1,

(R) — P(e) = w(§ — Ny). | ©9)

Therefore, if we choose, according to equation (7),

P(e) = m(Np— }) (10)

we obtain v¥(co) = 0, consistent with equation (4). Because of equation (3} we then
have

P(—k) = —1(k) (11)

s0 that (k) is continuous except at k& = O where it jumps by w(2N, — 1). From
equation (9) we obtain the sum rule for Ap{k), namely

f” Ap(k) dk =1 — N, 12)
04

so that the bound states reduce the continuum DoOs. It is interesting that for Ny =
0 (as for the double-barrier tunnelling structure) the total change in the continuum
DOS is always %, even for the vanishingly small scattering potential. In this limit,
Ap(k) — 6(k). For the vanishingly small quantum well we always have a bound
state (N, = 1) and Ap(k) — —6(k).

In the lower half-plane we can also have simple poles of T(z). If one such pole
occurs near the real axis at &k, — il", we have

Ty
T() > =2 i )
which gives, for real z = k&,
(T()] 2 et (14)

T V= k)2 4T

Thus we obtain a Lorentzian resonance of |T'(k)|* centred at k; of width I'. Knowing
that |T(k)| < 1, we obtain |Tyj < I'. The phase of T(k) will be (1, is the phase of
To)

P(k) =y —tan~ [T/ (k — k)] 15)
which gives, by virtue of equation (1),

1 T



1704 W Trzeciakowski and M Gurioli

Thus the simple poles of T'(z) below the real axis give rise to Lorentzian resonances
in |T(k){* and in Ap(k) with exactly the same position and width.

The general relationships between A p( k) and the transmission amplitude |T'( k)|
can be obtained by considering the function f(z)

() = log(T( 2t H s ) (17)

analytic for Im z > 0. The factor (z + i3)/z takes care of the zero of T(z) when
lz| — 0. In the final results we take 8 — 0. The remaining factors eliminate the
poles for z = ik, . For |2} — oo the function f(z) vanishes. Therefore we can obtain
the standard dispersion relations [1] between the real and imaginary parts of f(=z).
The first dispersion relation is

2 +o0 ’
og(iToly1+ ) = 2 [T [tk 4 -1 (£)

—ng:tan"(%)] (18)

n=1
where P stands for the principal value of the integral. Using

1 :
= 3 log(IK — k) (19)

integrating by parts and setting 3 — 0, we obtain

log(@) = -Tlrfm (d’ﬁgf') +2Z er+ ) log(|k’ — k|). (20

—00

Here we omit the principal value symbal because log |k’ — k| is integrable around k.
The integral of the second term in large parentheses can be performed analytically.
After some simple transformations we obtain

k:z
I—F'

Ny w2 00
log[[T(k)] H(1+ 75)] == dk' Ap(k') log (21)
n=1 +

The lower integration limit is 0, which means that we avoid any (k') contributions
to dy(k') /dk’ arising because of the discontinuity of ¥(k") at zero. From the above
formula we can obtain another sum rule for Ap(k). For jk| — oo, according to
equation (4),

Ap(k) ~ k2 (22)
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while
(k)| =1 - 75 (23)

Expanding log(1+ ¢} = ¢ in equation (21), we obtain the sum rule

Ny vy
2 o2 n_ <«
n§=1nn 7—/0+ dk' k (Ap(k) wk’z)' (24)

Both terms in the large parentheses cannot be inteprated separately but their
difference is integrable. One could also differentiate both sides of equaticn (18) with
respect to k, arriving at the dispersion relation which is the derivative of equation (21)
but with the principal value of the integral.

Let us now turn to the second dispersion relation between the Re[f(=z)] and
Im[f(=z)]. Differentiating both sides with respect to &k, we obtain (after some
manipulations)

2 & . too
Aol = =23, e - P [ mmap (el o @)

where the terms containing 3 cancelled. We can see from equation (25) that each
bound state reduces the DOS in the continuum by some quantity Ap, (k) with
fu""” Ap,(k) dk = 1. From the asymptotic behaviour of Ap(#k) (equation (22))
we can obtain from equation (25) the sum rule for the transmission amplitude:

a+2zn ——f+m log [T(K')|? dk' (26)

n=1

Let us finally note that the coincidence of narrow Lorentzian resorances in Ap(k)
and in | T'(k)}? can be easily demonstrated using the dispersion relations (21) and (25).

Concluding, we have found general relationships between the transmission
amplitude and the change in the DOS (equations (21) and (25)). We obtained
two sum rules for Ap(k) (equations (12) and (24)) and one sum rule for |T(k)]?
(equation (26)). Narrow resonances in Ap(k) correspond to simple poles of T'(z)
slightly below the real axis and have the same position and width for |T'(k)|* and

Ap(k).
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